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Landau-Ginzburg equations are derived and used to study the three-dimensional 
stability of convection in a layered porous medium of infinite horizontal extent. 
Criteria for the stability of convection with banded or square planform are 
determined and results are presented for two-layer and symmetric three-layer 
systems. In general the neutral curve is uni-modal and parameter space is divided 
into regions where either rolls or square cells are stable. For certain ranges of 
parameters, however, the neutral curve is bimodal and there exists a locus of 
parameters where two modes with different wavenumbers have simultaneous onset. 

1. Introduction 
Free convection in porous media has been the subject of considerable attention due 

to its importance in, for example, geothermal energy studies. Horton & Rogers 
(1945) and Lapwood (1948) were the first to show that, provided the Rayleigh 
number exceeds 47c2, convection cells can occur when a porous layer of infinite 
horizontal extent is uniformly heated from below. Experimental verification of this 
result was provided by Katto & Masuoka (1967). It was also confirmed by Westbrook 
(1969), using an energy stability method, and extended to finite domains by Beck 
(1972). Palm, Weber & Kvernvold (1972), using the method of Schluter, Lortz & 
Busse (1964, showed that two-dimensional rolls constitute the stable pattern of 
convection near onset, but values for the range of stable wavenumbers were not 
presented. By using a spectral method, Straus (1974) determined the region of 
stability of rolls well into the strongly nonlinear regime, thus extending and verifying 
the work of Palm et al. 

Subsequently, further realism has been sought by many authors. The separate 
effects of anisotropy and hydrodynamic dispersion on the stability of rolls were 
determined by Kvernvold & Tyvand (1979, 1980). The influence of aspect ratio on 
pattern selection was determined by, for example, Straus & Schubert (1981) and 
Riley & Winters ( 1 9 8 9 ~ ) ~  and on the onset of time-dependent motion by, for 
example, Caltagirone (1975) and Riley & Winters (1989b). Georgiadis & Catton 
(1986) considered the effects of a finite Darcy-Prandtl number, inertia and no-slip 
conditions on two-dimensional convection in an infinite layer. More recently Rees & 
Riley (1986, 1987, 1989 a, b )  and Rees (1990) have considered the effects of small- 
amplitude imperfections a t  the horizontal boundaries. They show that, depending on 
the wavenumber and symmetry of the imperfections, various stable cellular patterns 
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arise, including rolls, squares, rectangles and rolls with spatially varying phase or 
orientation. The effects of sidewall imperfections were studied by Impey, Riley & 
Winters (1990), who showed that the bifurcation structure is crucially dependent on 
the Fourier decomposition of the imperfection. 

The above-mentioned studies have all been concerned with convection in 
homogeneous media; it is the purpose of this paper to address the problem of the 
onset and stability of convection in inhomogeneous layers, or, more specifically, in 
layered media. Georghitza (1961) was the first to consider the effects of 
inhomogeneities. Two problems were investigated : the first concerned a porous 
medium consisting of two sublayers with slightly different permeabilities ; the 
second, a single layer with a permeability having a weak, linear dependence on the 
vertical coordinate. Donaldson (1962) used a finite-difference method to compute 
the flow and temperature field in a two-layer system, the lower layer of which was 
impermeable, but finitely conducting. Ribando & Torrance (1976) assumed an 
exponential variation in the ratio of viscosity to permeability. More recent works 
have concentrated directly on the effects of layering. Masuoka et al. (1978) derived 
criteria for the onset, of convection in a two-layer system and also calculated flow 
patterns. Rana, Horne & Cheng (1979) used a three-layer system to model the Pahoa 
reservoir in Hawaii. A comprehensive analysis of the onset of convection and the 
post-critical heat transfer was presented by McKibbin & O’Sullivan (1980, 1981). 
This was extended to  inciude the effects of thin, highly impermeable ‘sheets’ 
(McKibbin & Tyvand 1983) and thin highly permeable ‘cracks’ (McKibbin & 
Tyvand 1984) within the layer. McKibbin (1983) generalized Donaldson’s work to 
include layers which do not have the same thickness or thermal conductivity. 

In  the above multilayer studies, and also in those involving other material 
inhomogeneities, the flow has been assumed to be two-dimensional. Owing to the 
presence of slip conditions in porous media flows, the results these papers describe are 
certainly valid for a medium which is narrow in the spanwise coordinate so that 
three-dimensional disturbances are suppressed. However, the question of the 
validity of the results in horizontally unbounded media is unresolved. We have 
partial information in that Riahi (1983) considered flow in a porous layer bounded 
above snd below by semi-infinite regions of impermeable, conducting media and 
found that three-dimensional square cells constitute the stable planform in part of 
parameter space. It is the primary task of this paper to determine the preferred 
planform of convection near onset, thereby validating and extending the above 
results. Of major importance also are the stability boundaries, i.e. the range of stable 
wavenumbers, since these determine the possible variation in heat transfer. 

Recent studies have concerned convection in related configurations. Catton & 
Lienhard (1984) and Heiber (1987) have analysed the onset of two-dimensional 
convection in multiple pure-fluid layers when the layers are separated by a rigid layer 
of finite conductivity and thickness. Lienhard & Catton (1986) extended these results 
by calculating the post-critical heat transfer coefficients. Criteria have also been 
derived for the onset of two-dimensional convection in coupled fluid/porous layers 
by Sommerton & Catton (1982) and Pillatsis, Taslim & Narusama (1987). Chen & 
Chen (1988) considered a model of double-diffusive convection in a porous layer 
underlying a fluid layer in order to describe channel segregation in the solidification 
of alloys. They performed a linear stability analysis showing that the neutral 
stability curve may be bimodal. Similar bimodality was found by Proctor & Jones 
(1988) who considered flow in a double BBnard layer, i.e. two layers of fluid separated 
by a rigid conducting membrane of zero thickness. They considered two-dimensional 
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Z* = z N  = d 
Z* = z N - l  

z* = ZN-* 

FIGURE 1 .  Definition sketch of the flow domain comprising a layered porous medium consisting 
of N homogeneous sublayers. 

convection when two modes onset simultaneously with a wavenumber ratio of 
precisely 2 and found a rich bifurcation structure. Bimodality also arises in the 
present problem and is a consequence of layering. 

The general layout of the paper is as follows. Section 2 contains a derivation of the 
governing equations and boundary and interface conditions for an arbitrary number 
of layers. A weakly nonlinear analysis is presented in $ 3  and it is shown that the 
amplitude of convection in the form of rolls (squares &re the superposition of two 
orthogonal rolls) is governed by a set of coupled space-dependent Landau-Ginzburg 
equations similar in form to that for the BBnard problem. These equations are 
analysed in $4. Criteria for the stability of rolls and squares are given and bounds on 
the range of stable wavenumbers €or both planforms are derived. In  $$5 and 6 we 
present the main results of our analysis, the former containing results for two-layer 
systems, the latter for symmetric three-layer systems. In $7 ,  our method is applied 
to the studies of Donaldson (1962) and Rana et al. (1979) confirming their assumption 
that the flow is two-dimensional. Finally, we discuss the results in $8. 

2. Formulation of the problem 
We consider a fluid-saturated porous layer which is heated uniformly from below 

and composed of N homogeneous sublayers (see figure 1). The outer horizontal 
boundaries, which are situated a t  z* = 0 and z* = d ,  are held a t  temperatures T,  + AT 
and T,, respectively, where AT > 0, and are impermeable. The horizontal interfaces 
between the layers are assumed to be permeable. In each sublayer, conservation of 
mass, momentum and energy (suitably averaged over a representative elementary 
volume) determine the pressure P, relative to the pressure when the system is all a t  
a temperature T,; the Darcy velocity vector q = (u, v, w); and the temperature T :  

v -q=o ,  (2.1) 

(VP + PP* (T - To) g 1 (2.2) q = -> K 
P 
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Here the Darcy-Prandtl number has been assumed large so that inertia effects are 
negligible in (2.2), and the Boussinesq approximation has been invoked. In the above 
g is the gravity vector; p,  c,  ,u and ,8* are the density, specific heat, viscosity and 
coefficient of cubical expansion of the saturating fluid; pi, ci, K, and q5i are the 
density, specific heat, permeability and porosity of the i th  sublayer matrix ; k, 
denotes the effective thermal conductivity of the ith saturated sublayer and t* 
denotes time. 

The outer boundary conditions are given by 

T = %+AT, w = 0 on z* = 0, 

T = To, w = O  o n z * = d .  

At the interfaces between the sublayers, the temperature, pressure and vertical 
fluxes of mass and heat are taken to be continuous. We also assume that the net mass 
flux along the layer is zero. 

To facilitate the analysis of the three-dimensional stability characteristics of finite- 
amplitude convection, we recast the above equations and boundary conditions in 
terms of the pressure and temperature fields. On eliminating q from (2.1)-(2.3) we 
obtain 

where A: = [q5ipc + (1 -#$)pi ci]/pc. This system possesses a trivial 'conduction ' 
solution with a piecewise-linear temperature distribution and no convection : 

In the above S, = d, /k , ,  where d,  is the depth of the ith sublayer, 
N i 

s = c s,, zi = a,, 
j-1 j-1 

and zZd1 < z* < z,. The temperature drop across the i th sublayer is given by 

AT, =:AT.  (2.10) 

It proves convenient to use a similar non-dimensionalization to that of McKibbin 
& O'Sullivan (1980, 1981). Therefore we set 

(2.11) 
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in (2.6) and (2.7), to obtain 

(2.12) 

where k,  is the thermal conductivity of a reference sublayer and A, = A:r,2k,/ki. 
Here ri = d i / d  is the relative thickness of sublayer i compared with the depth of the 
whole layer, and R, is a local Rayleigh number defined by 

(2.14) 

Thus in each sublayer the equations are non-dimensionalized differently and the 
corresponding z-coordinate, Z,, takes values between 0 and 1. 

The boundary conditions are now 

fj k N r  k b - R , k , B  - 0  -0 ,  
1 -  1 -  1 -  rl ,-1 k,’ az r1 

e,=o, -- a~~ - o onZN = I ,  
92, 

(2.15) 

(2.16) 

and the interface conditions at  Zi = 1 and Zi+l = 0 are 

(2.17d) 

For later reference we introduce R given by 

(2.18) 

which is a global Rayleigh number given in terms of the total temperature drop and 
depth of the layer, the permeability and thermal conductivity of the reference 
sublayer, n, and is scaled relative to the critical Rayleigh number, 4n2, for a single 
layer. Using (2.14) and (2.18), a convenient alternative representation is given by 

(2.19) 

The heat transferred through the layer is a quantity of important practical 
interest. Therefore we introduce the Nusselt number, Nu, defined as the ratio of the 
heat transferred by convection and conduction to that transferred by conduction 
alone, and given by 

(2.20) 
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where we have assumed that convection takes the form of rolls with generators in the 
y-direction and wavelength L ; for other modes of convection, such as square cells, the 
integration is over the appropriate region in (x, y)-space. 

3. Weakly nonlinear expansion 
The bifurcation to two-dimensional convection from the conduction solution was 

described by McKibbin & O'Sullivan (1980, 1981). Steady convection bifurcates 
supercritically at a critical Rayleigh number which is dependent on the particular 
configuration, and it is a straightforward, but lengthy, computation to find the post- 
critical Nusselt number. The assumption of two-dimensional flow is common to most 
previous investigations : Donaldson (1962), Masuoka et al. (1979), Rana et al. (1979), 
McKibbin (1983) and McKibbin & Tyvand (1983, 1984). Riahi (1983) showed, 
however, that when a single porous layer is bounded by finitely conducting, 
impermeable bedrock and caprock, three-dimensional flow with square planform can 
constitute a stable pattern. In  view of this we shall consider general three- 
dimensional stability. 

We use Newell-Whitehead-Segel theory and seek asymptotic expansions in 
powers of E :  

n-0 

where R(") and Rj") are related via (2.19) and E Q 1 is the typical magnitude of the 
post-critical motion. Here (pi'), el')) are given by 

i.e. the non-dimensional conduction solution. 

orientation # : 
The solution to the O(e)-equations is taken to be the sum of two rolls of relative 

where the amplitudes, A andB, are functions of the slow timescale 7 = E 2 t  and, in the 
first instance, the slow spatial scales X = E X  and Y = ~ y .  We note that the differential 
operators arising a t  O(E)  may be made self-adjoint by a suitable weighting of each 
equation only if the layer has a constant thermal conductivity - we assume this from 
now on. In  general the application of the solvability condition, which is derived 
below, to the O(E2)-equations yields the result that R(') = 0 (the exception occurs 
when second-order resonances arise - these are discussed later). 

The solution to the O(E2)-equations is complicated by the presence of terms 
involving the first-order partial derivatives of the amplitudes, but this does not prove 
too troublesome for they may be shown to be orthogonal to the eigenfunctions (f f", 
ql") and therefore are not involved in the solvability condition a t  second order. On 
proceeding to the solvability condition on the O(e3)-equations we find terms 
involving the second spatial derivatives of the amplitudes. These terms, however, 
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simply reflect the curvature of the neutral curve near its minimum, and hence the 
required coefficient can be calculated from the linear stability problem. In this way 
we obtain 

c1 A,  = (TA + c2 A,, - c,A[AA+ c4 BB], ( 3 . 5 ~ )  

c1 B, = UB + c2 B X B X B  - C, B[BB + c4 AA],  (3.5b) 

where cr = R(')/R('), X, = Xcos$- Ysin$, and c2 2 0 is the curvature-related 
coefficient. The values cl, c3 and c4 are real functions of T( and Kt (i = 1(1)N), and c4 
also depends on $, the relative orientation of the rolls. It may be shown analytically 
that c ,  is positive and, numerically, we find that c, and c4 are also positive. 

In order to analyse the zigzag instability, we consider slightly oblique modes and 
define the slow spatial scales X* = &, Y* = &y. Omitting all detail, we obtain 

( 3 . 6 ~ )  

(3.6b) 

where Y z  = Y*cos$+X*sin$ and the coefficient of the a2/aY*2 term in ( 3 . 6 ~ )  is 
chosen to be consistent with the behaviour of the neutral curve near its minimum. 
Thus when A K ei(Kx+Ly*), the wavevector of the roll is (a+&, d L )  and its 
wavenumber is a + e(K +L2/2a)  + o(E). When K = - L2/2a the wavenumber becomes 
a + o(E) .  Likewise the effects of the space-dependent terms in ( 3 . 6 ~ )  cancel implying 
that, for a mode of wavenumber a, the critical value of u is zero, as expected. 

Convection in the form of any number of rolls may now be computed owing to the 
absence of further resonances in the weakly nonlinear expansion. For example if we 
consider convection in the form of three rolls of orientations 0, qi and x and common 
wavenumber, a, then the respective amplitudes, A ,  B and C, of the rolls are given by 

( 3 . 7 4  

c ~ B ,  = (TB-c,B[BB+c,($)AK+c,(x-$) CC], (3.7b) 

(3.7c) 

The heat transferred across the layer may now be computed: from (2.20) the 

( 3 . 8 ~ )  

el A,  = (TA - c,A[AK+ c4($) BB+ c4(x) CC], 

~1 C, = UC - c3 C[CC + c4(x - qi) BB + c4(x) AA], 

where the spatial derivatives have been omitted. 

Nusselt number is 

NU = 1 + e2N~2(R(2)/R(o)), 
where 

4. Analysis of the amplitude equations 
The evolution of two rolls of finite relative orientation, $, is governed by equations 

(3 .5) ,  where c4 = cp($ )  > 0. When (T > 0 there is an infinity of possible steady 
solutions to these equations. They fall into two simple classes, namely pure modes for 
which one of A and B is zero, and mixed modes where both A and B are non-zero. The 
former class is typified by the roll solution 

A = [(a-c2K2)/c,]~eiKX, B = 0, 
15 
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where the solution has been normalized to be real a t  X = 0. The latter category is 
typified by the solution 

A = A,eiKX, B = B,eiLXB, (4.2) 
where 

u + c ~ ( c ~ L ~ - K ~ )  0- +C2(C4K2-L2) 
(AJ2 = , IB,I2 = . (4.3% b )  

+c4) ~ ~ ( 1 - c : )  c3( 1 + c4) c3( 1 - ci)  

It is the stability of the solutions (4.1) and (4.2) with which we are concerned 

4.1. The stability of roll so1,utions 
Consider first the stability of the pure mode given by (4.1). There are three forms of 
instability to which this steady solution may be subject, namely the zigzag, sideband 
and cross-roll instabilities. The analysis for the zigzag instability, using (3 .6a) ,  
follows closely the analysis of Newell & Whitehead (1969) for the BBnard problem, 
and yields the result that  modes with K < 0 are unstable to disturbances in the form 
of a pair of rolls equally oriented a t  an O(&)-angle to the original roll. The 
disturbances subsequently evolve into a single roll. The sideband-instability result 
follows immediately from the analysis of Newell & Whitehead : the disturbance, 
which is of the form ei(K+L)X+cei(K-L)X where c is some constant, grows when 

c2 K 2  < u < 3c2 K 2 ,  (4.4) 

where the lower bound represents the neutral curve for the A-mode. 
The cross-roll instability is analysed by looking a t  B-mode disturbances using 

(3.5b). It is easily shown that the most unstable disturbance has the form B = 
constant, i.e. it has precisely the critical wavenumber, and has that orientation q5 
which minimizes c4(q5). In  our numerical calculations this was generally achieved 
when 4 =in; situations where this is not so are discussed in $5. Thus the 
disturbance is a t  right angles to the original mode and grows when 

(4.5) 

here cgm = min4 c4($) is assumed to be greater than 1. 
The relative importance of the sideband and cross-roll instabilities is gauged by 

comparing (4.4) and (4.5) whereupon we find that the cross-roll instability bound is a 
more restrictive bound on the wavenumber perturbation, K ,  when c4m/(c4m - 1) > 3, 
that is, when 

C p m  < g. (4.6) 

For a single porous layer cLm = 10/7 x 1.42857 (Rees & Riley 1 9 8 9 ~ )  and we recover 
the known result that  the cross-roll instability is more important than the sideband 
instability. 

Using (3.5) it  is easily shown that rolls are unstable to cross-roll disturbances when 

~ 4 m  < 1,  (4.7) 

whatever the value of K .  As the fastest-growing disturbance is perpendicular to the 
original roll, the fully evolved flow pattern then has square planform and comprises 
two rolls as given by (4.2) and (4.3). 
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4.2. The stability of square cells 
Having deduced the region of stability of rolls we now turn to the question of the 
stability of square cells. In  order to simplify the analysis we assume that the 
constituent rolls have the same wavenumber and are given by 

A = A,e‘KX, B = AoeiKY, (4.8) 
where IA,12 = (c-c2K2)/c,(l+c4), and c4 = c4($r). We consider four instability 
mechanisms corresponding to disturbances in the form of (i) the constituent rolls, (ii) 
sideband modes, (iii) zigzag modes and (iv) oblique rolls. 

On introducing disturbances in the form of the constituent rolls it is simple to show 
that square cells are unstable whenever c4(&c) > 1, which in view of (4.7) is not 
unexpected. Thus the planform of the stable mode of convection depends entirely on 
the value of c4: when c,(!gc) > 1 rolls are stable and squares are unstable, and when 
c&) < 1 rolls are unstable and squares are stable. Moreover the same analysis also 
shows that rectangular cells comprising two rolls at  relative orientation # are stable 
whenever c4(#) < 1. 

The ‘ sideband ’ instability may be analysed by introducing the substitutions A = 
AOeiKX+eA(X, Y) ,  B = A,eiKY+~B(X, Y) into (3.5), where X, = - Y  as # = +xl and 
linearizing. The following equations are obtained for the disturbances eA and e B :  

(4.9a) 

a2eB 

a7 ay2 eA + c4 eiK(Y-X) ‘ A ] .  
- 

~ 1 -  - a~,+c,----c,lA,)~[(2 +c4)eB +e2iKyi?B+c4e*K(x+y)- 

(4.9b) 

Solutions exist of the form 

€A - A 1  A2  > (4.10a) 

‘€3 - B1 3 2  7 (4.10b) 

- ei((K+L) X+MY) + ei((K-L) X - M Y )  

- ei((K+M) Y+LX) + ei((K-M) X-LY) 

where we note that the Y-variation in eA and the X-variation in eB give rise to O ( 2 )  
variations in the roll wavenumbers (and hence 0(e4) variations in the Rayleigh 
number - a higher order than that which a represents) and therefore both are passive 
variations in their respective equations, at  least to the order of the present analysis. 
The resulting eigenvalue problem for the growth rates of eAl, eAa, eB1 and eB2 is found 
to decouple into two eigenvalue problems. One of these reproduces the result (4.4), 
the other yields the neutral curve 

(4.11) 

which is a more restrictive bound on stability than (4.4). Decoupling also occurs for 
the zigzag instability and yields the result as for rolls, namely that square cells with 
K < 0 are unstable. 

Finally we look at disturbances in the form of rolls at an orientation 9, relative to 
the A-roll. Using (3.7) and (4.2), the linearized equation governing the corresponding 
amplitude, C, is given by 

ClC, = [a-Cs(C4(#c)+C4(~~-#~)) lA,l21C* (4.12) 
15.2 
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C i  C, = “ X ( $ c )  a+C2K2(C4(#c)+Cq(~n-$c))I / (1+C4(~n))IC,  (4.13) 

where ~(4,) = 1 + c4($) -c4($J -c4(+n - #,), and the disturbance has precisely the 
critical wavenumber which maximizes the growth rate. We know that (d/d$) 
c4($) = 0 a t  both $, = 0 and qbC = because c4($) = c4( - 6 )  = c4(n - E), and therefore 
it can be shown that ~(9,) has turning values a t  $c = 0, in and in. The substitution 
of the first and third of these values into (4.13) yields the marginal curve above which 
disturbances grow: 

(T = c , K 2 ( 2 + c 4 ( ~ ~ ) ) ,  (4.14) 

since ~ ~ ( 0 )  = 2. This stability bound, however, is less restrictive than that for the 
sideband instability, (4.4), as c4($n) < 1.  On substituting q5, = in into (4.13) we obtain 
the marginal curve 

2c, C 4 ( & ) K 2  

2C4($r) - 1 -c4(gn) ’ 
r =  (4.15) 

In all our calculations the denominator of (4.15) was found to be positive, implying 
that square cells are stable to C-mode disturbances above this curve. If the 
denominator were negative, then a similar analysis shows that square cells are 
unstable to C-mode disturbances with $, = an. 

It is now a simple matter to  determine the relative importance of this oblique roll 
instability mechanism and the sideband instability. On defining r such that 

(4.16) 

then r > 1 implies that the sideband instability dominates, and vice versa. We find 
numerically that r 2 30 and therefore the sideband instability dominates the 
oblique roll instability. 

5. Numerical results for the two-layer configuration 
We first present our results for a porous layer consisting of two sublayers. As 

stressed by McKibbin & O’Sullivan (1980, 1981) there is a wide variety of 
configurations to consider even for a two-layer system. In the case of equal thermal 
properties in each sublayer i t  is possible, however, to present an exhaustive survey 
of the situation at the onset of convection. We have assumed the layers to be of 
infinite horizontal extent with the lower sublayer (sublayer 1) as the reference layer 
and therefore the results are functions of the two parameters, rl and K,/K, .  

Values of the (global) critical Rayleigh number and wavenumber for this 
configuration were presented in McKibbin & O’Sullivan (1980) as a function of K , / K ,  
for lor, = l ( 1 )  9. They found, in common with Masuoka et al. (1979), that for certain 
values of the parameters two minima exist on the critical-Rayleigh-number curve. 
However, this was mentioned only briefly and no cases were presented where the 
critical curve had two minima a t  the same value of the Rayleigh number. Contours 
of the critical Rayleigh number are shown in figure 2 for values of rl and K , / K ,  lying 
between 0.01 and 1.0. We note that the results obtained by inverting the sublayers, 
i.e. interchanging (r, ,  K , )  and (r, ,  K , )  are identical to  those presented here. It may be 
seen that, when either K , / K ,  = 1 or rl = 1,R, = 1, which is the appropriate scaled 
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value for the Lapwood (or single-layer) problem. Moreover the critical Rayleigh 
number, having been scaled with respect to the properties of sublayer 1,  takes the 
valueKJK, when rl = 0. The heavy line in figure 2 traces the double-minimum locus, 
the presence of which is also indicated by a discontinuity in the slope of the contours. 
This locus also represents the points a t  which the critical wavenumber for the onset 
of convection changes discontinuously. Values of aC/n ( R  is the critical wavenumber 
for the Lapwood problem) are shown in figure 3 where this discontinuity is clearly 
evident. When rl = 0, r1 = 1 or K J K ,  = 1 then aC/n = 1 as the configuration is 
equivalent to a single layer. For small values of K J K ,  the critical wavenumber 
becomes larger as rl decreases and the convection pattern becomes increasingly 
concentrated within the more permeable sublayer (see figure 3 b  in McKibbin & 
O'Sullivan 1980 for a typical example). As r1 decreases further and (r, ,  K,/Kl) crosses 
the double-minimum locus the most unstable mode suddenly switches to one with a 
global convection pattern (i.e. most of the fluid circulates through both sublayers; 
see figure 3a in McKibbin & O'Sullivan 1980), and with a,/n taking a value nearer 
to 1. 

One very interesting feature of these results not previously noted occurs a t  the end 
of the double-minimum locus. As the locus is traversed upwards, as drawn, the two 
critical wavenumbers approach each other and coincide at the end point. Thus the 
critical-Rayleigh-number curve has a single minimum there, but it is a quartic rather 
than a quadratic turning point. This is seen in figure 4 where we show successive 
critical curves corresponding to points on the double-minimum locus together with 
the locus of their minimum values. The quartic point corresponds to the values rl = 
0.323889, K,/K, = 0.0657659, R, = 6.917323 and U , / R  = 1.540927. These values 
were obtained using the classical fourth-order Runge-Kutta method with a constant 
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FIQURE 3. Values of the scaled wavenumber, aJn, as a function of r ,  and K J K ,  for the 
two-layer system. 
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FIQURE 4. Neutral curves corresponding to values of (r , ,  K , /K, )  lying on the double-minimum locus 
for the two-layer system. The curves correspond to K,/K, = 0.06576, 0.063, 0.06, 0.057, 0.053, 
0.047, 0.042, 0.034. The dashed line denotes the locus of the respective minima. 



Stability of convection in a layered porous medium 449 

rl 

FIGURE 5. Values of'the coupling parameter, c4(+n), as a function of rl and K , / K ,  for the two-layer 
system. Values of e, above 1.5 correspond to regions where the sideband instability restricts the 
range of stable wavenumbers of rolls more than the cross-roll instability, and vice versa. 

step-length to solve for f io) and gjo) together with their first three derivatives with 
respect to a, and by setting R, = R ,  = R,, = 0. Additional accuracy was obtained 
using Richardson extrapolation. 

In  figure 5 we show values of c,($n) as a function of r1 and K,/K, .  There is a large 
region of parameter space where cq > ij which is the condition for the sideband 
instability to be more important than the cross-roll instability. Near the quartic 
point the values of c,($) increase rapidly, which therefore seems to herald a 
singularity. A careful study of the corresponding numerical values indicates that the 
singularity occurs a t  rl = 0.316484, K,/Kl = 0.0636392 for the smaller of the two 
wavenumbers on the double-minimum locus. Here the ratio of the critical 
wavenumbers is 4 2 ,  and the singularity in c,(&JT) is caused by the blow-up of the 
second-order solutions. On defining the critical wavenumbers to be ocl and a2, where 
a1 < a,, the second-order interaction of two modes with wavevectors (a,,O) and 
(0, a,) gives rise to forcing terms with wavevectors (al ,  -al)  and (al, al ) ,  and therefore 
both have wavenumber 2/2al. In  general, when a2 = 2/2a,, the forcing terms contain 
components proportional to modes with orientation and wavenumber as. In  a 
similar manner two modes with the higher wavenumber may interact a t  second order 
to generate a forcing term proportional to a mode with the lower wavenumber 
providing that their relative orientation has the appropriate value. This type of 
resonance occurs at all points on the double-minimum locus and therefore invalidates 
our analysis there. It is also worth noting that the values of both Nu, and c,($c) for 
the smaller wavenumber tend towards zero as a2/a1-+2, owing to a second-order 
resonance. This in turn implies that c3 --f co since Nu, is inversely proportional to cs. 
The coefficient c3 c, remains bounded, however, since the solutions involved in its 
determination remain bounded and so c4 + 0 also. Codimension-two problems with 
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FIGURE 6.. Values of the scaled curvature term, lOc,, as a function of r1 and K J K ,  for the 
twb-layer system. 

O(2)  symmetry in which two modes with wavenumbers in the ratio 1:2 have 
simultaneous onset are of general interest. Studies by Armbruster, Guckenheimer & 
Holmes (1988), Jones & Proctor (1987) and Proctor & Jones (1988) have revealed a 
rich dynamical structure including heteroclinic cycles and modulated travelling 
waves. This aspect, however, lies outside the scope of the present work. 

Thus, for parameter values on the double-minimum locus, the general analysis 
detailed in 993 and 4, breaks down owing to resonant effects between the two 
wavelengths. At such points amplitude equations arise with only quadratic 
nonlinearities, implying the existence of transcritical bifurcations and flow at 
Rayleigh numbers below the critical value for linear instability. We note that when 
this is the case the effect of small perturbations in rl and K J K ,  will do little to affect 
this qualitative behaviour, and therefore doubt must be cast on the validity of our 
results in the region near to the double-minimum locus. The determination of the 
degree of subcriticality of convection and the region of validity of our results requires 
a fully nonlinear numerical computation. 

Finally, in figure 6 we present values of c2, which primarily determines the size of 
the band of wavenumbers that are linearly unstable when the Rayleigh number is 
just supercritical. When c2 is relatively large this band is narrower than when c p  is 
small (cf. Riley & Davis 1989). Values of c2 on the left side of the locus are larger than 
the corresponding values on the right side, so that there is a larger range of unstable 
wavenumbers on the left side (see figure 4) ; the left side also corresponds to smaller 
wavenumbers (see figure 3). As the quartic point is approached c2 decreases to zero, 
as expected. The values of c2, in conjunction with the values of c,(+n) shown in figure 
5 ,  also determine the region of stability of rolls in Rayleigh number-wavenumber 
space. Whenever c4 > $ the stability region is bounded by u = 3c, K 2 ,  otherwise the 
bound is given by (4.5). 
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FIQURE 7. Values of the critical Rayleigh number R'O), as a function of rl and K J K ,  for the 
three-layer syatem (a). 

As regards the heat transfer through the layer, we find it is greater when the 
convection pattern is global (relatively small a) than when convection is localized in 
one sublayer. 

6. Numerical results for symmetric three-layer configurations 
In  this section we present the numerical results for symmetric configurations 

consisting of three sublayers, for which k, = k, = k,, r l  = r3 and K ,  = K,.  We expect 
that  the results for non-symmetric layers are qualitatively the same as those 
presented for the two-layer configuration as regards the existence of double- 
minimum points and the presence of second-order resonant terms. 

Again, there are only two free parameters, r l  and K,/K, ,  so that the whole of 
parameter space may be explored. We subdivide the presentation of the results into 
two parts : (a )  those configurations for which the middle sublayer is more permeable 
than the outer sublayers, and ( b )  those for which it is less permeable. For (a )  the 
middle layer was taken as the reference sublayer and the parameters rl and K l / K 2  
(<1) varied. For (b)  the lowest sublayer (sublayer 1) was taken as the reference 
sublayer and rl and K2/Kl  ( < l )  varied. 

(a)  Values of the critical (global) Rayleigh number for the specific case rl = r, = 0.4, 
r2 = 0.2, a = R (rolls of square cross-section) are given in McKibbin & O'Sullivan 
(1980) for various values of K,/K, .  By restricting themselves to one chosen 
wavenumber and one set of sublayer thicknesses they did not discover the presence 
of double-minimum points for this configuration. The locus of double-minimum 
points is shown as a heavy line on the critical-Rayleigh-number plot depicted in 
figure 7. Again the critical Rayleigh number increases as the thickness of the less 
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FIMJRE 8. Values of the coupling parameter, c,($), as a function of rl and K J K Z  for the three-layer 
system (a) .  The second thick line denoting c&) = 1 divides parameter space into two regions 
where either rolls (c, > 1 )  or square cells (c4 < 1) are stable. The single-layer value is given by 
c4(&) = 1017. 

permeable sublayer increases. The critical-wavenumber values just to the right of the 
doublc-minimum locus do not deviate greatly from n and correspond to a global flow 
pattern, as defined in the previous section. This occurs because the thin, but highly 
permeable, middle sublayer has little effect on the flow pattern ; such behaviour was 
noted by McKibbin & Tyvand (1984) who studied the effect of ‘cracks’, or thin, 
highly permeable sublayers, on the onset of two-dimensional convection and the 
subsequent heat transfer. The corresponding critical Rayleigh numbers have values 
near to K,/K,  since the Rayleigh number is defined relative to sublayer 2. Just to the 
left of the double-minimum locus, however, the critical wavenumber is large 
compared with n and the flow is localized within the central sublayer. The end-point 
of the locus again corresponds to a quartic turning point, which arises at rl = 
0.419940, K J K ,  = 0.0202078 with R, = 23.26715 and ac/n = 2.301403. 

Values of c,($) are shown in figure 8:  there is a region where c,(tn) < 1 within 
which rolls are unstable and square cells constitute a (linearly) stable mode of 
convection. It is interesting to note that the region contains the double-minimum 
locus itself and this could therefore have important ramifications on pattern selection 
as the locus is crossed. We note also that the values of c,(&) are bounded above by 
2, indicating that there are no singular solutions at second order, as is the case for 
two-layer configurations. Indeed this assertion may be proved by considering the 
updown symmetry of the &-dependent parts of the O(E)-  and O(e2)-terms (see also 
Jones & Proctor 1988). The first-order solutions are even about the midlayer plane 
and can only generate odd forcing terms a t  second order. Since the eigensolutions are 
even these forcing terms do not cause a resonance even if the wavenumber takes the 
critical value. We conclude, therefore, that our analysis is generally valid as no 
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FIGURE 9. Values of the critical Rayleigh number, R‘O), as a function of rl and K J K ,  for the 
three-layer system ( b ) .  

singularities arise at second order. Similarly this conclusion is valid for all symmetric 
configuratio1,s ; the O(e2)-singularities occurring on the double-minimum locus will 
arise for all non-symmetric configurations provided that they do indeed possess a 
double-minimum locus. 

We do need to be aware, however, that other resonances may arise for symmetric 
configurations a t  third order, for example when the critical wavenumbers are a, and 
a2 = 3a,. We hope to study these higher-order resonances in the future, but, in the 
meantime, it is important to note that the effect of these resonances may be shown 
to apply only within O ( 2 )  of the double-minimum locus. Thus the present analysis 
is valid but needs modification very close to the double-minimum locus. 

As in the case of the two-sublayer configuration, we find that the larger heat 
transfer values occur when the circulation is global. 

( b )  We turn now to the complementary case where the middle sublayer is less 
permeable than the outer layers. Values of the critical Rayleigh number are shown 
in figure 9 ;  again we note the presence of a double-minimum locus. In  this 
configuration we have convection consisting of corotating vertical cells localized 
within the outer layers for parameter cases to the right of the double-minimum locus 
(see figure 8 a  in McKibbin & O’Sullivan 1980). Here there is relatively little flow 
within the middle sublayer. For parameter values lying just to the left of the locus, 
the flow is global in character but has a relatively small wavenumber. As the outer 
sublayers become thinner and more permeable, the inner boundaries begin to imitate 
constant-pressure surfaces. The flow then consists of nearly vertical flow through the 
middle sublayer with almost all the fluid being discharged into or entrained from the 
outer sublayers (see figure 8 c  in McKibbin & O’Sullivan 1980). The critical 
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FIGURE 10. Values of the coupling parameter, c4(@), as a function of r, and K,/K, for the three- 
layer system ( b ) .  Values of c4 above 1.5 correspond to regions where the sideband instability 
restricts the range of stable wavenumbers of rolls more than the cross-roll instability, and vice 
versa. 
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FIGURE 1 1 .  A close-up view of the c4(+r) = 1.5 contour near the quartic point for the three-layer 
system (6). 
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wavenumber for a single layer with constant-pressure boundaries may be shown to 
be zero; values lying to the left of the double-minimum locus are decreasing as K, /K l  
decreases. 

Yet again there is a quartic turning point, which is located a t  r1 = 0.350339, 
K,/Kl  = 0.0278195 where R, = 5.966713 and a, = 1.195315~. 

Values of c,(+E) for case ( b )  are presented in figure 10. We see that, in most of the 
parameter space, c4($) > $, which means that the sideband instability is more 
important than the cross-roll instability. The boundary where the sideband and 
cross-roll instabilities have equal importance and which is given by c,(&) = $ now 
assumes a rather complicated form. To clarify the situation, the part of the boundary 
near the quartic point is rescaled and shown in figure 11. Again c,(+E) is bounded for 
reasons of symmetry, as in (a). Once more third-order resonances arise which 
complicate the analysis within O(e2) of the double-minimum locus in parameter 
space. However, the resulting analysis is likely to be simpler than in (a)  since rolls, 
rather than squares, are the stable planform on both sides of the double-minimum 
locus. Yet again we find relatively high heat transfer values when the wavenumber 
is small and the flow is global. 

7. Application of the method to previous studies 
There are, to our knowledge, only two studies other than those of McKibbin and 

his coworkers to which we can apply our method. The earlier of these studies consists 
of a numerical analysis (using finite differences) of the flow in a porous layer overlying 
an impermeable layer of equal thickness and thermal conductivity (Donaldson 1962). 
The flow was assumed to be two-dimensional and the upper boundary was either 
impermeable (closed-top), or at a constant pressure in order to simulate an open-top 
reservoir. This latter condition is very easily accommodated into our numerical 
scheme. 

The configuration studied by Donaldson corresponds to our parameters rl = 
r2 = 4, k l / k ,  = 1 and K J K ,  = 0, and to taking sublayer 2, the upper sublayer, as the 
reference sublayer. Although our numerical method does not apply when 
K J K ,  = 0, we found that setting K J K ,  as small as does give reasonably 
accurate results. In  tables 1 and 2 we present numerical results for this two-layer 
configuration for values of the permeability ratio varying from 1 to where the 
upper boundary is assumed to be either impermeable or at constant pressure. Values 
of R,, a,, Nu,, c4(&), c,($E), C,(:E), c4(@) and c2 are given and are seen to converge as 
K J K ,  becomes small. For the closed-top case (table 1) there is a small range of the 
permeability ratio for which the sideband instability is more important than the 
cross-roll instability (i.e. when c,(+E) > 1.5). For very small values o f K , / K , ,  c4(+n) = 
1.2495, which yields the following expressions for the neutral, sideband instability 
and cross-roll instability curves : 

u = c2K2, u = 3c2K2, u = 5.0080c,K2, (7 .1)  
respectively. Hence the region of stability of rolls is quite small compared with the 
region of existence of rolls. The limiting values of R, and a, are 3.3455 and 1.6954, 
respectively, which are in accord with McKibbin (1983). The corresponding results 
for the open-top case are given in table 2, where it may be seen that, since c,($E) > $ 
for all values of K,/K, ,  the sideband instability is more important than the cross- 
roll instability. Thus we have confirmed that two-dimensional rolls constitute the 
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K J K ,  R, 
o.oooo1 3.3455 
0.00003 3.3454 
O.OOO1 3.3451 
0.0003 3.3441 
0.001 3.3408 
0.003 3.331 1 
0.01 3.2969 
0.03 3.1952 
0.1 2.7980 
0.2 2.2520 
0.3 1.8694 
0.4 1.6132 
0.5 1.4337 
0.7 1.2003 
1 .o 1 .oooo 

TABLE 1. Values of R,, 

%In: Nu, c 4 m  c 4 m  C4Cin:) c 4 m  1OCz 
1.6954 0.5242 1.2495 1.4061 1.5767 1.7691 0.2983 
1.6953 0.5242 1.2496 1.4062 1.5768 1.7691 0.2983 
1.6951 0.5242 1.2497 1.4063 1.5769 1.7693 0.2984 
1.6945 0.5245 1.2500 1.4066 1.5774 1.7698 0.2984 
1.0924 0.5252 1.2510 1.4080 1.5790 1.7714 0.2985 
1.6863 0.5272 1.2539 1.4118 1.5836 1.7762 0.2988 
1.6646 0.5350 1.2651 1.4260 1.6007 1.7932 0.3001 
1.6990 0.5619 1.3051 1.4752 1.6567 1.8434 0.3048 
1.3522 0.7423 1.5427 1.7163 1.8650 1.9665 0.3680 
1.1423 1.2094 1.6823 1.8011 1.8949 1.9614 0.6061 
1.0681 1.5914 1.6100 1.7330 1.8399 1.9292 0.7840 
1.0360 1.7980 1.5399 1.6743 1.7966 1.9056 0.8836 
1.0195 1.9005 1.4929 1.6357 1.7686 1.8904 0.9406 
1.0049 1.9784 1.4455 1.5968 1.7406 1.8753 0.9945 
1.oooO 2.0000 1.4286 1.5830 1.7306 1.8700 1.1032 
a,, Nu,, c4(&), c4(&t), c,($r), c4(@) and e,  for different permeability ratios 

for the closed-top Donaldson (1962) problem 

KJK2 Rc %In: Nu, C , C W  c 4 m  c 4 m  c4cw 1OCz 
O.oooO1 2.2151 1.2438 0.4442 1.7462 1.8024 1.8625 1.9279 0.5273 
O.ooOo3 2.2150 1.2438 0.4442 1.7462 1.8024 1.8626 1.9279 0.5280 
O.OOO1 2.2147 1.2436 0.4442 1.7464 1.8026 1.8627 1.9280 0.5274 
0.0003 2.2139 1.2431 0.4443 1.7470 1.8031 1.8632 1.9283 0.5276 
0.001 2.2112 1.2415 0.4447 1.7489 1.8049 1.8648 1.9294 0.5287 
0.003 2.2033 1.2369 0.4458 1.7545 1.8101 1.8692 1.9324 0.5313 
0.01 2.1755 1.2208 0.4500 1.7740 1.8282 1.8845 1.9426 0.5408 
0.03 2.0954 1.1755 0.4648 1.8290 1.8774 1.9245 1.9674 0.5723 
0.06 1.9749 1.1119 0.4968 1.9013 1.9382 1.9697 1.9921 0.6326 
0.1 1.8195 1.0405 0.5597 1.9652 1.9870 2.0017 2.0068 0.7336 
0.2 1.4936 0.9283 0.7953 2.0025 2.0096 2.0119 2.0088 0.9938 
0.3 1.2635 0.8702 1.0591 1.9852 1.9943 2.oooO 2.0020 1.1808 
0.4 1.1017 0.8347 1.2895 1.9582 1.9730 1.9851 1.9942 1.3028 
0.5 0.9840 0.8097 1.4738 1.9304 1.9515 1.9703 1.9865 1.3850 
1 .o 0.6864 0.7405 1.9537 1.8326 1.8768 1.9196 1.9607 1.5584 

TABLE 2. Values of R,, a,, Nu,, c,(!jn:), c,(&), c,(in:), c,(&), and c2 for different permeability ratios 
for the open-top Donaldson (1962) problem 

stable planform for convection, at  least when the Rayleigh number is close to its 
critical value. 

The second study is by Rana et al. (1979) who considered large-amplitude 
convection in a model of the Pahoa reservoir in Hawaii. They considered three cases 
of this open-top three-layer system, the first two had heated vertical boundaries and 
therefore we cannot apply our method. The third case had insulated sidewalls which, 
for porous media convection, is equivalent to fixing the wavenumber in an infinite 
layer since slip boundary conditions apply. The parameters they quote have been 
presented in the appropriate form for this study by McKibbin & O’Sullivan (1981) 
and are rl = 0.4375, r2 = 0.25, r3 = 0.3125, K , / K ,  = 0.4, K,/Kl  = 2.5 and k, = 
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4 c4(4)  4 c4(4) 
0" 2.00000 50" 2.01773 

10' 2.00097 60" 2.02220 
20" 2.00373 70" 2.02569 
30" 2.00786 80" 2.02789 
40" 2.01275 90" 2.02864 

TABLE 3. Values of ~ ~ ( 4 )  for the Ram et al. (1979) problem 

lc, = k,. The lowest sublayer (sublayer I )  is taken as the reference. Rana et al. 
considered a two-dimensional cavity of aspect ratio 2 (width/height) and calculated 
the critical Rayleigh number to be R, = 0.83834 and the corresponding wavenumber, 
a, = W .  In a layer of infinite horizontal extent the critical Rayleigh number is reduced 
to 0.77155 a t  a wavenumber of 0.72351~.  Values of Nu, and c, for this case are 
1.521 98 and 0.15907, respectively. I n  table 3 we present values of ca as a function of 
q5 for the infinite layer. We note that cq(q5) 2 2 for all q5 and it varies by less than 
1.5 Ti. Thus the sideband instability is the predominant instability mechanism for 
positive K and rolls again constitute the stable planform. 

8. Discussion 
We have considered the onset and three-dimensional stability of convection in a 

fluid-saturated porous layer, heated from below and consisting of homogeneous 
horizontal sublayers. In  particular, we have analysed configurations consisting of 
two sublayers and symmetric layers comprising three sublayers. The marginal curves 
for the onset of convection have been calculated and we have presented contour plots 
of the critical Rayleigh numbers. Prominent features of these plots are the loci of 
double-minimum points where two modes of differing wavenumbers onset simul- 
taneously. These are significant, for rich dynamical behaviour has been found in 
such situations where the wavenumbers are commensurate : interesting phenomena 
such as travelling waves and homoclinic orbits occur. 

A weakly nonlinear analysis was presented for the general case of one global 
minimum in the neutral curve ; we hope to pursue the special case of two minima in 
future work. Utilizing a pressure-temperature formulation of the governing 
equations, we were able to investigate the three-dimensional stability properties of 
the finite-amplitude convection. In  direct contrast to McKibbin & O'Sullivan (1981), 
we find that the governing (linearized) system may be made self-adjoint (but only if 
the thermal properties of the sublayers are identical) by a suitable weighting of the 
equations in each sublayer. Thus whereas McKibbin & O'Sullivan resorted to a direct 
numerical solution of the third-order equations to determine the solvability 
condition, we find a simple analytic form. This enabled Landau-Ginzburg equations 
governing the amplitudes of various two-dimensional modes to be derived more 
easily. 

As in Rayleigh-BBnard convection, the sideband-instability curve (a  = 3c,K2) 
may be deduced directly from the curvature of the neutral curve at its base, and the 
zigzag instability is active when the wavenumber of the fluid motion is less than the 
critical wavenumber. We have determined (i) the relative importance of the cross-roll 
and sideband instabilities for rolls, (ii) the stability of rolls and square cells and (iii) 
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the relative importance of the sideband and an oblique mode instability for square 
cells. 

For two-layer configurations the sideband instability turns out to be a more 
important instability mechanism than the cross-roll one over much of parameter 
space, although the cross-roll instability is more important for a single layer. We find 
that there is a locus of double-minimum points along which two modes of differing 
wavenumbers have simultaneous onset and the end of which corresponds to a quartic 
turning point in the neutral curve. A singularity lying on the locus was revealed and 
traced to  the presence of resonant forcing terms a t  second order; in this case the 
solvability condition a t  second order yields sets of quadratic-amplitude equations. 
This resonance phenomenon occurs a t  all points on the double-minimum locus. Thus 
there must exist a region, not necessarily small, surrounding the double-minimum 
locus where the present analysis does not apply; the extent of such a region is 
unknown owing to the local nature of weakly nonlinear analysis and can only be 
deduced by using a suitable fully nonlinear numerical method. 

For symmetric three-layer configurations there are two double-minimum loci, one 
of which occurs when the middle sublayer is more permeable than the outer layers, 
the other when it  is less permeable. When the middle layer is more permeable the 
cross-roll instability is the dominant instability mechanism. The corresponding 
double-minimum locus is found to occur entirely within a region where the cross-roll 
instability mechanism is sufficiently strong as to render rolls unstable and square 
cells stable. When the middle sublayer is less permeable, the sideband instability 
becomes the more important instability over much of parameter space. 

On the double-minimum loci no second-order resonances arise, as shown by 
symmetry arguments, but third-order resonances may occur. Although they are not 
analysed here there is, in fact, a considerable number of these resonances but their 
influence is felt only within an O(ez)-distance of the double-minimum locus. 

Although we have restricted ourselves by assuming identical thermal properties in 
each sublayer and considering only two specific configurations, we may, nevertheless, 
make some informed comments about other configurations based on the qualitative 
features of the present results and the role played by symmetry. The presence of a 
double-minimum locus seems to be a general feature, and it is possible to find certain 
configurations for which there are three minima (see figure 12). If the parameter 
values are close to those on a double-minimum locus, the effects of resonance between 
the modes of different wavenumbers will depend on the symmetry of the layer in the 
way that we have found here. Open-top layers cannot be considered as symmetric, 
but it may be possible to approach symmetry fairly closely either by having almost 
impermeable upper and lower sublayers, or by having a very thin, but highly 
permeable, lower sublayer. Of course, the symmetric layer cannot be regarded as 
typical for a perturbation in its parameters will contain an antisymmetric 
component, in general. Indeed i t  may be shown that an O(e)  antisymmetric 
perturbation will generate quadratic terms in the third-order amplitude equations 
when the parameters lie within O ( 2 )  of the double-minimum locus. In  this way it 
would be possible to have some idea of the expected phenomena near the double- 
minimum locus for general asymmetric layers. We hope to return to this a t  a later 
date. 

The effect on finite-amplitude convection of different thermal properties in each 
layer is unknown. All that may be said with certainty is that  double- (and multiple-) 
minimum loci do exist for this more general problem. Although we believe that the 
same qualitative results apply (such as the supercritical bifurcation of single-roll 
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FIQURE 12. Marginal curves for the first two modes for a non-symmetric three-layer system 
displaying three minima simultaneously. The values of the defining parameters are : T ,  = 0.26, 
r2 = 0.539056, r3 = 0.200944, K , / K ,  = 0.0214724, K, /K ,  = 1.7 and k, = k, = k,. The critical 
Rayleigh number is 11.932 788 and the critical wavenumbers are 0.455707n, 3.0764581~ and 
4.081 8701~. For this general three-layer system there still remain two free parameters (say K J K ,  
and rl)  which may be varied to track loci of triple-minimum points. 

modes, and the absence of resonant-forcing terms at  second order) we cannot easily 
prove it since we lack an analytic form for the solvability condition. 

Recent work by Rees & Riley (1986, 1987, 1989a, b )  and Rees (1990) on the effect 
on convection in a single layer of non-uniform boundary conditions such as 
undulating isothermal boundaries or non-uniformly heated plane boundaries, has 
shown that there exists a vast array of different types of cellular planform which are 
linearly stable. The presence of thermal non-uniformities and undulations is well 
known in the geothermal context and it is natural to question the combined effects 
of both non-uniformities and layering. This is a project of considerable algebraic 
complexity, but it is possible to infer some of the qualitative features of the resulting 
flows. Assuming that the parameters are far from a double-minimum locus and that 
the stable mode in the absence of imperfections is the roll, then the results 
summarized above should apply for the composite problem also. If square cells were 
stable for the unmodulated problem, it would then be possible to use the amplitude 
equations derived in Rees & Riley (1989a) for this imperfection. 
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